Home
Class 12
MATHS
int(dx)/(x-sqrt(x)) is equal to a)2log|s...

`int(dx)/(x-sqrt(x))` is equal to a)`2log|sqrt(x)-1|+C` b)`2log|sqrt(x)+1|+C` c)`log|sqrt(x)-1|+C` d)`(1)/(2)log|sqrt(x)+1|+C`

A

`2log|sqrt(x)-1|+C`

B

`2log|sqrt(x)+1|+C`

C

`log|sqrt(x)-1|+C`

D

`(1)/(2)log|sqrt(x)+1|+C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

int (dx)/((x + 1) sqrt(x)) is equal to a) tan^(-1) sqrt(x) + C b) 2 tan^(-1) x + C c) 2 tan^(-1) (sqrt(x)) + C d) tan^(-1) (x^((3)/(2))) + C

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

int((x+1)^(2))/(x(x^(2)+1))dx is equal to a) "log"|x(x^(2)+1)|+C b) "log"|x|+C c) "log"|x|+2"tan"^(-1)x+C d) "log"(1/(1+x^(2)))+C

int(dx)/(cosx-sinx) is equal to a) (1)/(sqrt(2))log|tan(pi/2-pi/8)|+c b) (1)/(sqrt(2))log|cot(x/2)|+c c) (1)/(sqrt(2))log|tan(pi/2-(3pi)/(8))|+c d) (1)/(sqrt(2))log|tan(x/2+(3pi)/(8))|+c

int_(-1)^(1//2)(e^(x)(2-x^(2))dx)/((1-x)sqrt(1-x^(2))) is equal to a) (sqrt(e))/(2)(sqrt(3)+1) b) (sqrt(3e))/(2) c) sqrt(3e) d) sqrt(e/3)

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx is equal to a) (1)/(sqrt(3))tan^(-1)((x)/(sqrt(3)(x+1))) b) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(3(x+1)))) c) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(x+1))) d)None of these

lim_(xto-oo)(2x-1)/(sqrt(x^(2)+2x+1)) is equal to a)2 b)-2 c)1 d)-1

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=-(1+sqrt(2))/(2) then f(1) is equal to a) -log(sqrt(2)+1) b)1 c) 1+sqrt(2) d) 1/2log(1+sqrt(2))