Home
Class 12
MATHS
int(e^(x))/(x)(xlogx+1)dx is equal to ...

`int(e^(x))/(x)(xlogx+1)dx` is equal to
a)`(e^(x))/(x)+C`b)`xe^(x)log|x|+C` c)`e^(x)log|x|+C` d)`x(e^(x)+log|x|)+C`

A

`(e^(x))/(x)+C`

B

`xe^(x)log|x|+C`

C

`e^(x)log|x|+C`

D

`x(e^(x)+log|x|)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to :

int 1/x(log_(ex)e)dx is equal to

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

inte^(x){logsinx+cotx}dx is equal to : a) e^(x)cotx+c b) e^(x)logsinx+c c) e^(x)logsinx+tanx+c d) e^(x)+sinx+c

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

int (xe ^(x))/( (1 + x )^(2)) dx is equal to a) ( - e ^(x))/( x +1) + C b) (e ^(x))/( x +1 ) + C c) (xe ^(x))/( x +1)+ C d) (- xe ^(x))/( x +1 ) +C

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c

inte^(-x)(1-tanx)secxdx is equal to a) e^(-x)secx+c b) e^(-x)tanx+c c) -e^(-x)tanx+c d) -e^(-x)secx+c

int(sqrt(x)+1/(sqrt(x)))^(2)dx is equal to a) x^(2)/(2)+2x+"log"|x|+C b) x^(2)/(2)+2+"log"|x|+C c) x^(2)/(2)+x+"log"|x|+C d) x^(2)/(2)+2x+2"log"|x|+C