Home
Class 12
MATHS
int(1-tan^(2)x)dx is equal to a)tanx+C...

`int(1-tan^(2)x)dx` is equal to
a)`tanx+C`b)`secx+C`c)`2x-secx+C`d)`2x-tanx+C`

A

`tanx+C`

B

`secx+C`

C

`2x-secx+C`

D

`2x-tanx+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a+c)^(b+c)f(x)dx is equal to

int_(-2)^(2) |x| dx is equal to a)0 b)1 c)2 d)4

int(secx+tanx)^(2)dx=

If int (f(x))/(log cos x) dx = - log(log cos x) + C , then f(x) is equal to a)tan x b) -sin x c) -cos x d) -tan x

inte^(-x)(1-tanx)secxdx is equal to a) e^(-x)secx+c b) e^(-x)tanx+c c) -e^(-x)tanx+c d) -e^(-x)secx+c

int( sin ^2 x-cos ^2 x)/(sin ^2 x cos ^2 x) d x is equal to a) tan x+cot x+C b) tan x+cosec x+C c) -tan x+cot x+C d) tan x+sec x+C

The value of int_(-1)^(2) 4x^(2)|x|dx is equal to a)17 b)16 c)15 d)14

int_(-1)^(1) max {x,x^(3)} dx is equal to a) 3//4 b) 1//4 c) 1//2 d)1

inte^(tanx)(sinx-secx)dx , is equal to a) e^(tanx)*cosx+C b) e^(tanx)*sinx+C c) -e^(tanx)*cosx+C d) e^(tanx)*secx+C

Let f(x)=(sin^(2)pix)/(1+pi^(x)) Then, int(f(x)+f(-x))dx is equal to :a)0 b) x+c c) x/2-(cospix)/(2pi)+c d) x/2-(sin2pix)/(4pi)+c