Home
Class 12
MATHS
If f(x)=int(2x)^(sinx)cos(t^(3))dt then ...

If `f(x)=int_(2x)^(sinx)cos(t^(3))dt` then `f'(x)` is equal to
a)`cos(sin^(3)x)cosx-2cos(8x^(3))`
b)`sin(sin^(3)x)sinx-2sin(8x^(3))`
c)`cos(cos^(3)x)cosx-2cos(x^(3))`
d)`cos(sin^(3)x)-cos(8x^(3))`

A

`cos(sin^(3)x)cosx-2cos(8x^(3))`

B

`sin(sin^(3)x)sinx-2sin(8x^(3))`

C

`cos(cos^(3)x)cosx-2cos(x^(3))`

D

`cos(sin^(3)x)-cos(8x^(3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)="sin"^(-1)((1-"cos"2x)/(2"sin"x)) , then |f'(x)| is equal t o

int(sin^(6)x+cos^(6)x+3sin^(2)xcos^(2)x)dx is equal to

int(cos x + x sin x)/(x^(2) + x cos x)dx is equal to

intsqrt((cosx-cos^(3)x)/(1-cos^(3)x))dx is equal to a) 2/3sin^(-1)(cos^(3//2)x)+C b) (3)/(2)sin^(-1)(cos^(3//2)x)+C c) (2)/(3)cos^(-1)(cos^(3//2)x)+C d)None of these

Prove that (cos3x+cos7x-cos2x)/(sin 7x-sin3x-sin2x)=cot2x

int4sinx*"cos"(x)/(2)*"cos"(3x)/(2)dx is equal to

Prove that (sin3x+sinx)sinx+(cos3x-cosx)cosx=0

The integral (sin^(2)xcos^(2)x)/((sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2))dx is equal to

If f(x) = sin x + cos x, x in (-oo, oo) and g(x) = x^(2), x in (-oo, oo) , then (fog)(x) is equal to a)1 b)0 c) sin^(2) (x) + cos (x^(2)) d) sin (x^(2)) + cos (x^(2))