Home
Class 12
MATHS
The differential equation representing t...

The differential equation representing the family of curves given by `y=ae^(-3x)+b`, where a and b are arbitrary constants, is a)`(d^(2)y)/(dx^(2))+3(dy)/(dx)-2y=0` b)`(d^(2)y)/(dx^(2))-3(dy)/(dx)=0` c)`(d^(2)y)/(dx^(2))-3(dy)/(dx)-2y=0` d)`(d^(2)y)/(dx^(2))+3(dy)/(dx)=0`

A

`(d^(2)y)/(dx^(2))+3(dy)/(dx)-2y=0`

B

`(d^(2)y)/(dx^(2))-3(dy)/(dx)=0`

C

`(d^(2)y)/(dx^(2))-3(dy)/(dx)-2y=0`

D

`(d^(2)y)/(dx^(2))+3(dy)/(dx)=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation representing the family of curves y=xe^(cx) (c is a constant ) is a) (dy)/(dx)=(y)/(x)(1-"log"(y)/(x)) b) (dy)/(dx)=(y)/(x)"log"((y)/(x))+1 c) (dy)/(dx)=(y)/(x)(1+"log"(y)/(x)) d) (dy)/(dx)+1=(y)/(x)"log"((y)/(x))

The differential equation of all non-horizontal lines in a plane is a) (d ^(2) y )/( dx ^(2)) =0 b) (dx)/(dy) =0 c) (dy)/(dx) = 0 d) (d ^(2) x )/( dy ^(2)) =0

For each of the differential equations given below, indicate its order and degree (if defined) i) ((d^2 y)/(d x^2))+5 x((dy)/(dx))^2-6 y=log x ii) ((dy)/(dx))^3-4((dy)/(dx))^2+7 y = sin x iii) (d^4 y)/(d x^4)-sin ((d^3 y)/(d x^3))=0

Check whether y=e^(-3x) is a solution of the differential equation frac(d^2y)(dx^2)+frac(dy)(dx)-6y=0

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

If y = e ^(a cos ^(-1)x) , - 1 le x le 1 , show that (1 - x^(2)) ( d^(2) y)/( dx^(2)) - x ( dy)/( dx) - a^(2) y = 0