Home
Class 12
MATHS
If f(x)=x+1 and g(x)=2x, then f{g(x)} i...

If `f(x)=x+1 and g(x)=2x`, then
`f{g(x)}` is equal to

A

`2(x+1)`

B

`2x(x+1)`

C

x

D

`2x+1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=-2x^(2)+1 and g(x)=4x-3 then (gof)(-1) is equal to

If f(x)=ax+b and g(x)=cx+d , then f[g(x)]-g[f(x)] is equivalent to a) f(a)-g(c) b) f(c)+g(a) c) f(d)+g(b) d) f(d)-g(b)

The function f, g and h satisfy the relations f'(x)=g(x+1)andg'(x)=h(x-1) . Then, f''(2x) is equal to

If f:RtoR and g:RtoR defined by f(x)=x^2 and g(x)=x+1 , then gof(x) is

If g(x) is the inverse of f(x) and f'(x) = (1)/( 1+ x^3) , then g'(x) is equal to a) g(x) b) 1+g(x) c) 1+ {g(x)}^3 d) (1)/( 1+ {g(x)}^3)

If intf(x)dx=g(x) , then intf^(-1)(x)dx is equal to a) g^(-1)(x) b) xf^(-1)(x)-g(f^(-1)(x)) c) xf^(-1)(x)-g^(-1)(x) d) f^(-1)(x)

If f(x) = 3x + 5 and g(x) = x^(2) - 1 , then (fog) (x^(2) - 1) is equal to