Home
Class 12
MATHS
If z=(-1)/(2)+i(sqrt(3))/(2), then 8+10z...

If `z=(-1)/(2)+i(sqrt(3))/(2)`, then `8+10z+7z^(2)` is equal to
a)`-(1)/(2)-i(sqrt(3))/(2)` b)`(1)/(2)+isqrt(3)/(2)`c)`-(1)/(2)+i(3sqrt(3))/(2)` d)`(sqrt(3))/(2)i`

A

`-(1)/(2)-i(sqrt(3))/(2)`

B

`(1)/(2)+isqrt(3)/(2)`

C

`-(1)/(2)+i(3sqrt(3))/(2)`

D

`(sqrt(3))/(2)i`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z= cos (pi)/(3) - i sin (pi)/(3) then z^(2)-z+1 is equal to

If z = (2-i)/(i) , then R e(z^(2)) + I m(z^(2)) is equal to a)1 b)-1 c)2 d)-2

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

sin 765^(@) is equal to a)1 b)0 c) sqrt(3)//2 d) 1//sqrt2

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

If z= 2- isqrt(3) then |z^(4)| is equal to

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

int_(-1)^(1//2)(e^(x)(2-x^(2))dx)/((1-x)sqrt(1-x^(2))) is equal to a) (sqrt(e))/(2)(sqrt(3)+1) b) (sqrt(3e))/(2) c) sqrt(3e) d) sqrt(e/3)

If z_(1)=2+3i and z_(2)=3+2i , then |z_(1)+z_(2)| is equal to