Home
Class 12
MATHS
The value of (1)/(i) + (1)/(i^2) + (1)/(...

The value of `(1)/(i) + (1)/(i^2) + (1)/(i^3) + …. + (1)/(i^(102) )` is

A

`-1-i`

B

`-1 +i`

C

`1-i`

D

`1+i`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The modulus of (1+i)/(1-i) - (1-i)/(1+i) is

The value of (i^(18) + ((1)/(i))^(25))^(3) is equal to

Find the modulus of (1+i)/(1-i) - (1-i)/(1+i)

The value of i - i^(2) + i^(3) - i^(4) +.......-i^(100) is equal to a)i b)-i c)1-i d)0

Solve 1/z + 1/(2+i) = 1/(1+3i)

The value of Sigma_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)=-1 , is equal to

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

For positive integers n_(1), n_(2) the value of the expression (1+i)^(n_(1)) + (1+ i^(3))^(n_(1)) + (1+ i^(5))^(n_(2)) + (1+ i^(7))^(n_(2)) , where i= sqrt-1 is a real number if and only if

Using the value of i^2 , prove that 1/i=-i

Let i^(2)=-1 , then (i^(10)-1/(i^(11)))+(i^(11)-1/(i^(12)))+(i^(12)-1/(i^(13)))+(i^(13)-1/(i^(14)))+(i^(14)+1/(i^(15))) is equal to a) -1+i b) -1-i c) 1+i d) -i