Home
Class 12
MATHS
tan [ 3 tan^(-1) ((1)/(5)) - (pi)/(4) ]...

`tan [ 3 tan^(-1) ((1)/(5)) - (pi)/(4) ]` is equal to

A

`- (13)/(46)`

B

`- (11)/( 46)`

C

`- (7)/( 46)`

D

`- (9)/( 46)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4)) is equal to

The value of tan^(-1) ((7)/(4))- tan^(-1) ((3)/(11)) is equal to

2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

tan ( 2 tan^(-1) ((2)/(5))) is equal to

The sum of the series tan ^(-1)"" (1)/( 1 + 1 + 1 ^(2)) + tan ^(-1)"" (1)/( 1 + 2 + 2 ^(2)) + tan ^(-1) ""(1)/( 1 + 3 + 3 ^(2)) +... is equal to : a) pi/4 b) pi/2 c) pi/3 d) pi/6

The value of sin^(-1)((4)/(5)) + 2 tan^(-1)((1)/(3)) is equal to

If y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x)) , then (dy)/(dx) is equal to a) (5)/(1+25x^(2)) b) (1)/(1+25x^(2)) c)0 d) (5)/(1-25x^(2))

If angle A = 90 ^(@) in the triangle ABC, then tan ^(-1) (( c )/(a+b)) + tan ^(-1) ((b)/(a+c)) is equal to : a)0 b)1 c) (pi)/(4) d) (pi )/(6)

sin(tan^-1(1)) is equal to

If tan^(-1) ((x-1)/(x-2)) + tan^(-1) ((x+1)/(x+2)) = pi/4 . then find the value of x.