Home
Class 12
MATHS
If tan^(-1) (-x) + cos^(-1) ((-1)/(2))...

If `tan^(-1) (-x) + cos^(-1) ((-1)/(2)) = (pi)/(2)`, then
the value of `x` is

A

`sqrt(3)`

B

`(-1)/( sqrt3)`

C

`(1)/( sqrt3)`

D

`- sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin ^(-1) x + cos ^(-1) 2x = (pi)/(6), then the value of x is

If tan ^(-1) x + 2 cot ^(-1) x = (pi)/(3), then the value of x is

If tan^(-1) ((x-1)/(x-2)) + tan^(-1) ((x+1)/(x+2)) = pi/4 . then find the value of x.

If tan^(-1)(x+2)+tan^(-1)(x-2) - tan^(-1)((1)/(2)) = 0 , then one of the values of x is equal to

If 2 sin^(-1) x - cos^(-1) x = (pi)/(2) , then x is equal to

If sin^(-1)(x-1)+cos^(-1)(x-3) +tan^(-1)(x/(2-x^2))= cos^(-1)k+pi then the value of k is A)1 B) -1/sqrt2 C) 1/sqrt2 D)None of these

If tan^-1(frac(x-1)(x-2))+tan^-1(frac(x+1)(x+2))=pi/4 , then find the value of x

If tan(cos^(-1)x)=sin(cot^(-1)""(1)/2) , then find the value of x.

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

If tan^-1x=pi/10 ,then the value of cot^-1x is