Home
Class 12
MATHS
If overset(to)(alpha) = 3i - k, |overset...

If `overset(to)(alpha) = 3i - k, |overset(to)(beta) | = sqrt(5) and overset(to)( alpha) . overset(to)( beta) =3`, then the area of the parallelogram for which `alpha and beta` are adjacent sides, is

A

`( sqrt(17))/( 2)`

B

`(sqrt(14))/(2)`

C

`(sqrt7)/( 2)`

D

`sqrt41`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) and cos (alpha + beta) = -(12)/(13) , then sin beta is equal to

If alpha ne beta, alpha^(2)=5 alpha-3, beta^(2)=5beta-3 , then the equation having (alpha)/(beta) and (beta)/(alpha) as its roots is

Relation between 'alpha'and 'beta'is alpha=beta/(1+beta) .Define alpha and beta .

If x=a+b, y=a alpha + b beta and z= alpha beta + b alpha , where alpha and beta are complex cube roots of unity, then xyz=

If alpha and beta are the roots of the equation x ^(2) + alpha x + beta = 0, then

Consider the vectors oversetrarra=overset^^i-overset^^j+overset^^k"and"oversetrarrb=2overset^^i-3overset^^j-5overset^^k : If oversetrarra "and" oversetrarrb' are two adjactent sides of a parallelogram, find the area of the parallelogram .