Home
Class 12
MATHS
underset(x to 3) (lim)( sqrt(x) - sqrt(3...

`underset(x to 3) (lim)( sqrt(x) - sqrt(3) )/( sqrt( x^(2) -9) )` is equal to a)1 b)3 c)`sqrt3` d)0

A

`1`

B

`3`

C

`sqrt3`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(3)dx)/(sqrt(1+x^(2))) is equal to

sin 765^(@) is equal to a)1 b)0 c) sqrt(3)//2 d) 1//sqrt2

lim_(x rarr 0)((x)/(sqrt(1+x) + sqrt(1-x))) is equal to

If f be a function such that f (9) =9 and f '(9) = 3, then lim _(x to 9) ( (sqrt ( f (x)) - 3))/( sqrtx - 3) is equal to : a)9 b)3 c)1 d)6

underset(xrarr0)lim (sqrt(2+x)-sqrt(2-x))/(x) is equal to

The value of sqrt((-25))+3sqrt((-4))+2sqrt((-9)) is equal to

Rationalise sqrt(3x-2) - sqrt(x+2)

If f(9)=9,f'(9)=0, then underset(xrarr9) lim((sqrt(f(x))-3))/(sqrt(x)-3) is a)0 b)f(0) c)f(3) d)f'(3)