Home
Class 12
MATHS
int(27e^(9x) + e^(12x) )^(1//3) dx is eq...

`int(27e^(9x) + e^(12x) )^(1//3) dx` is equal to a)`(1//4)(27+ e^(3x) )^(1//3) + C` b)`(1//4) (27+ e^(3x ))^(2//3) +C` c)`(1//3) (27+ e^(3x) )^(4//3) + C` d)`(1//4)(27+ e^(3x) )^(4//3) +C`

A

`(1//4)(27+ e^(3x) )^(1//3) + C`

B

`(1//4) (27+ e^(3x ))^(2//3) +C`

C

`(1//3) (27+ e^(3x) )^(4//3) + C`

D

`(1//4)(27+ e^(3x) )^(4//3) +C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to

int_(-1)^(1) max {x,x^(3)} dx is equal to a) 3//4 b) 1//4 c) 1//2 d)1

int (xe ^(x))/( (1 + x )^(2)) dx is equal to a) ( - e ^(x))/( x +1) + C b) (e ^(x))/( x +1 ) + C c) (xe ^(x))/( x +1)+ C d) (- xe ^(x))/( x +1 ) +C

int(1)/([(x-1)^(3)(x+2)^(5)]^(1//4))dx is equal to a) 4/3((x-1)/(x+2))^(1//4)+C b) 4/3((x+2)/(x-1))^(1//4)+C c) 1/3((x-1)/(x+2))^(1//4)+C d) 1/3((x+2)/(x-1))^(1//4)+C

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

int (3^x)/( sqrt( 1- 9^x )) dx is equal to a) (log 3) sin^(-1) (3^x) + C b) (1)/(3) sin^(-1) (3^x) + C c) ((1)/(log 3)) sin^(-1) (3^x) + C d) (1)/(9) sin^(-1) (3^x) +C

If f(x)=log[e^(x)((3-x)/(3+x))^(1//3)] then f'(1) is equal to a) (3)/(4) b) (2)/(3) c) (1)/(3) d) (1)/(2)

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to