Home
Class 12
MATHS
int(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is...

`int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x)` is equal to
a)1 b)`pi`c)`pi/2`d)`pi/4`

A

1

B

`pi`

C

`pi/2`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (sin 2x )/( 1 + 2 cos^(2) x) dx is equal to

int _(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to :

int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx is

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=

If int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)f(sinx)dx , then A is equal to a)0 b) pi c) (pi)/(4) d) 2pi

The value of int _(-pi //4) ^(pi//4) x ^(3) sin ^(4) x dx is equal to : a) pi/4 b) pi/2 c) pi/8 d) 0

int_-(pi/2)^(pi/2) x sin x d x

int_(pi//4)^(3pi//4) (x)/(1+sin x)dx=

The sum of the series tan ^(-1)"" (1)/( 1 + 1 + 1 ^(2)) + tan ^(-1)"" (1)/( 1 + 2 + 2 ^(2)) + tan ^(-1) ""(1)/( 1 + 3 + 3 ^(2)) +... is equal to : a) pi/4 b) pi/2 c) pi/3 d) pi/6