Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `log x (dy)/(dx) + (y)/(x) = sin 2x` is
a)` y log | x | = C - (1)/(2) cos x`
b)`y log |x| = C + (1)/(2) cos 2x`
c)`y log | x| = C - (1)/(2) cos 2x`
d)`xy log | x | = C - (1)/(2) cos 2x`

A

` y log | x | = C - (1)/(2) cos x`

B

`y log |x| = C + (1)/(2) cos 2x`

C

`y log | x| = C - (1)/(2) cos 2x`

D

`xy log | x | = C - (1)/(2) cos 2x`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general solution of the differential equation xdy/dx+2y=x^2 log x

Solve the following differential equations x log x (dy)/(dx) + y = 2/x log x

Solutions of the differential equations (dy)/(dx) + (y)/(x) = sin x is : a) x(y+cos x ) = sin x+ c b) x(y-cos x ) = sin x+c c) x( y cos x ) = sin x +c d) x(y-cos x) = cos x+ c

The solution of the differential equation x (dy)/(dx) + y = (1)/(x^(2)) at (1, 2) is a) x^(2)y + 1 = 3x b) x^(2)y + 1 = 0 c) xy + 1 = 3x d) x^(2) (y + 1) = 3x

Differentiate the function (log x)^(cos x)

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

An integrating factor of the differential equations x (dy)/(dx) + y log x = xe^(x) x ^(-(1)/(2) log x) , (x ge 0 ) is:

The value of the integral int( cos x)/( sin x + cos x) dx is equal to a) x + log | sin x + cos x| + C b) (1)/(2) [ x + log | sin x + cos x|] +C c) log | sin x+ cos x | +C d) (x)/(2) + log | sin x + cos x | + C

An integrating factor of the differential equation (1 + x^(2)) (dy)/(dx) + xy = x is a) (x)/(1 + x^(2)) b) (1)/(2) log (1 + x^(2)) c) sqrt(1 + x^(2)) d)x

The solution of the differential equation (x(dy)/(dx) - y)/(sqrt(x^(2) - y^(2))) = 10x^(2) is a) sin^(-1)((y)/(x)) - 5x^(2) = C b) sin^(-1)((y)/(x)) - 5x^(2) = C c) (y)/(x) = 5x^(2) + C d) sin^(-1)((y)/(x)) = 10x^(2) + Cx