Home
Class 12
MATHS
If f (x)= int (1) ^(x) sin ^(2) ((t)/(2...

If `f (x)= int _(1) ^(x) sin ^(2) ((t)/(2)) dt,` then the value of `lim _(x to 0) (f (pi +x ) -f (pi))/(x)` is equal to

A

`1/4`

B

`1/2`

C

`3/4`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is

Let f (x) = sin x - cos x. Then the value of lim _( x to pi/2) ""(f (x)- f ((pi)/(2)))/(x - (pi)/(2)) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If f(x) = (sin^(-1)x)/(sqrt(1-x^(2))) , then the value of (1-x^(2))f'(x) - x f(x) is

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

The value of int _(0) ^(2a) (f (x) dx)/( f (x) + f (2a - x)) is:

f(x) = |(cosx,x,1),(2 sin x, x^(2),2x),(tan x, x ,1)| . Then value of lim_(xto0)(f'(x))/(x) is equal to a)1 b)-1 c)0 d)None of these