Home
Class 12
MATHS
If x= alpha cos ^(3) theta and y = alpha...

If `x= alpha cos ^(3) theta and y = alpha sin ^(3) theta, ` then `1 + ((dy)/(dx)) ^(2)` is

A

`tan theta `

B

`tan ^(2) theta `

C

`1`

D

`sec ^(2) theta `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a cos theta , y = b sin theta , then prove that ( d^(3) y)/( dx^(3)) = - ( 3 b)/( a^(3)) cosec^(4) theta cot theta

If x = a(1+ cos theta), y = a (theta + sin theta) , then (d^(2)y)/(d x^(2)) at theta = (pi)/(2) is

If x=acos^3theta and y=asin^3theta . Prove that 1+(dy/dx)^2=sec^2theta .

If x=asec^3theta and y=atan^3theta dx/(d theta) , dy/(d theta)

If x=asec^3theta and y=atan^3theta Find dy/dx

If x=acos^3theta , y=asin^3theta Find (d^2y)/dx^2 .

Evaluate |[cos theta, -sin theta], [sin theta, cos theta]|

If x=asec^3theta and y=atan^3theta Show that ((d^2y)/(dx^2))_(theta=pi/4)=1/(12a)