Home
Class 12
MATHS
If y = sin ^(-1) (2x sqrt (1- x ^(2))), ...

If `y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) ,` then `(dy)/(dx) ` is equal to a)`(x)/( sqrt (1- x ^(2)))` b)`(1)/( sqrt(1- x ^(2)))` c)`(2)/( sqrt (1 - x ^(2)))` d)`(2x)/( sqrt (1- x ^(2)))`

A

`(x)/( sqrt (1- x ^(2)))`

B

`(1)/( sqrt(1- x ^(2)))`

C

`(2)/( sqrt (1 - x ^(2)))`

D

`(2x)/( sqrt (1- x ^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

If u = tan^(-1) (( sqrt(1- x^(2) ) - 1)/( x) ) and v = sin^(-1) x , then (du)/(dv) is equal to a) sqrt( 1- x^2) b) - (1)/(2) c)1 d)-x

int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

Evaluate sin^(-1)((x+sqrt(1-x^2))/(sqrt2)) , where -1/sqrt2ltxlt1/sqrt2

sqrt ((y)/(x)) + sqrt ((x)/(y))=1, then (dy)/(dx) equals

Differentiate sin^(-1) ( 2 x sqrt( 1 - x^(2))) with respect to x if (1)/( sqrt(2)) lt x lt 1