Home
Class 12
MATHS
int (sqrt (x^(2) -1 ))/(x ) dx is equal ...

`int (sqrt (x^(2) -1 ))/(x ) dx` is equal to

A

`sqrt ( x ^(2) -1 ) - sec ^(-1) x + C`

B

`sqrt (x ^(2) -1 ) + tan ^(-1) + C`

C

`sqrt ( x ^(2) -1 ) + sec ^(-1) x + C`

D

`sqrt (x ^(2) - 1 ) - tan ^(-1)x + C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sqrt(x-1))/(xsqrt(x+1))dx is equal to

int cos [2 cot ^(-1) sqrt ((1 -x )/( 1 + x ))] dx is equal to:

int((x^(4)-x)^(1//4))/(x^(5))dx is equal to

int(x^(3))/(x+1)dx is equal to

int (1)/(sin x cos x)dx is equal to

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

int sqrt(e^(x)-1) dx is equal to :

int(x^(2))/(1+(x^(3))^(2) dx is equal to

int((x-a)/(x) - (x)/(x+a))dx is equal to