Home
Class 12
MATHS
The value of int (0) ^(1) (dx)/(e ^(x) +...

The value of `int _(0) ^(1) (dx)/(e ^(x) + e )` is equal to a)`(1)/(e) log ((1 + e )/(2))` b)`log ((1 + e )/(2))` c)`1/e log (1 + e)` d)`log ((2)/(1 + e ))`

A

`(1)/(3) log ((1 + e )/(2))`

B

`log ((1 + e )/(2))`

C

`1/e log (1 + e)`

D

`log ((2)/(1 + e ))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

The value of the integeral int _(1) ^(e) (1 + log x )/( 3x) dx is equal to

int e^(x log a ) e^(x) dx is equal to :

int 1/x(log_(ex)e)dx is equal to

The value of int_1^e 10^(log_e x) dx is equal to

Evaluate int(e^(2x)-1)/(e^(2x)+1)dx .

int _(0) ^(pi//2) (cos x )/( 1 + sin x ) dx equals to a) log 2 b) 2 log 2 c) (log2) ^(2) d) 1/2 log 2