Home
Class 12
MATHS
If p and q are respectively the perpendi...

If p and q are respectively the perpendiculars from the origin upon the straight lines, whose equations are `x sec theta + y cosec theta = a and x cos theta - y sin theta =a cos 2 theta, ` then `4p ^(2) + q ^(2)` is equal to a)`5a^(2)` b)`4a ^(2) ` c)`3a ^(2)` d)`2a ^(2)`

A

`5a^(2)`

B

`4a ^(2) `

C

`3a ^(2)`

D

`2a ^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If p_(1)andp_(2) are respectively length of perpendiculars from the origin to the straight lines x"sec"theta+y"cosec"theta=a " " and x "cos"theta-y"sin"theta=a"cos"2theta , then 4p_(1)^(2)+p_(2)^(2) is equal to

Solve sqrt 2+sin theta=cos theta .

If p and q are the lenghts of the perpendiculars from the origin to the lines x cos theta - y sin theta = k cos 2theta and x sec theta + y cosec theta = k respectively prove that p^2 + 4q^2= k^2

Given that tantheta=a/b find sin2theta and cos2theta

If sin theta + cosec theta = 2, then the value of sin ^(6) theta + cosec ^(6) theta is equal to

If x = a(1+ cos theta), y = a (theta + sin theta) , then (d^(2)y)/(d x^(2)) at theta = (pi)/(2) is

If cos theta+sin theta=sqrt(2) cos theta ,then show that cos theta-sin theta=sqrt(2) sin theta

Solve costheta+cos3theta-2cos2theta=0 .

Find the slope of the normal to the curve x=1-a sin theta, y=b cos ^2 theta at theta=pi/2