Home
Class 12
MATHS
(1+ (C1)/(C0)) (1+(C2)/(C3) )....(1+(Cn)...

` (1+ (C_1)/(C_0)) (1+(C_2)/(C_3) )....(1+(C_n)/(C_(n-1))) ` is equal to :
a)`(n+1)/(n!)` b)` ((n+1)^(n))/((n-1)!)` c)` ((n-1)^(n))/(n!)` d)`((n+1)^(n))/(n!)`

A

`(n+1)/(n!)`

B

` ((n+1)^(n))/((n-1)!)`

C

` ((n-1)^(n))/(n!)`

D

`((n+1)^(n))/(n!)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3),….,a_(n) are in AP and a_(1) = 0 , then the value of ((a_(3))/(a_(2)) + (a_(4))/(a_(3)) +...+(a_(n))/a_(n-1))-a_(2) ((1)/(a_(2)) + (1)/(a_(3))+...+(1)/(a_(n-2))) is equal to a) (n-2) + (1)/((n-2)) b) (1)/((n-2)) c)(n - 2) d)(n - 1)

If a_1,a_2,a_3,…….a_n is an AP with common difference d then tan[tan^(-1)(d/(1+a_1a_2))+tan^(-1)((d)/(1+a_2a_3))+...+tan^(-1)((d)/(1+a_(n-1)a_n))] is equal to a) ((n-1)d)/(a_1+a_n) b) ((n-1)d)/(1+a_1a_n) c) (nd)/(1+a_1a_n) d) (a_n-a_1)/(a_n+a_1)

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

int(dx^(3))/(x^(3)(x^(n)+1)) equals a) (3)/(n)ln((x^(n))/(x^(n)+1))+c b) 1/nln((x^(n))/(x^(n)+1))+c c) (3)/(n)ln((x^(n)+1)/(x^(n)))+c d) 3nln((x^(n+1))/(x^(n)))+c

tan^(-1)""(m)/(n)-tan^(-1)""(m-n)/(m+n) is equal to a) tan^(-1)""(n)/(m) b) tan^(-1)""(m+n)/(m-n) c) (pi)/(4) d) tan^(-1)((1)/(2))

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)...(C_(n-1)+C_n)=(C_0C_1C_2...C_(n-1)(n+1)^n)/(n!)

If m=""^(n)C_(2) , then ""^(m)C_(2) is equal to a) 3""^(n)C_(4) b) ""^(n+1)C_(4) c) 3""^(n+1)C_(4) d) 3""^(n+1)C_(3)

Given that C_r/(C_(r-1))=(n-r+1)/r Prove that (1+C_1/C_0)(1+C_2/C_1)...(1+C_n/(C_(n-1)))=(n+1)^n/(n!)