Home
Class 12
MATHS
underset(x to 0 ) lim {(1 + tan x ) /(1 ...

` underset(x to 0 ) lim {(1 + tan x ) /(1 + sin x )}^(cosec x ) ` is equal to : a)` (1)/(e)` b)` 1` c)` e` d)` e^(2)`

A

` (1)/(e)`

B

` 1`

C

` e`

D

` e^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

underset( x to 0)(lim) (e^(x^2) - cos x)/( x^2) is equal to a) 3/2 b) 1/2 c)1 d) - (3)/(2)

lim _( x to 0) [ (2 ^(x) -1)/( sqrt (1 + ) x-1 )] is equal to: a) log _(e) 2 b) log _(e) sqrt2 c) log _(e) 4 d) 1/2

lim _(x to 0) (log (1 + 3x ^(2)))/( x ( e ^(5x) -1 )) is equal to a) 3/5 b) 5/3 c) (-3)/(5) d) (-5)/(3)

Prove that underset (x rarr 0)lim (x^2 sin (1/x))/sin x=0

lim_(x rarr 0) ((1 + 2x)^(10) - 1)/(x) is equal to a)5 b)10 c)15 d)20

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

e^x tan y d x+(1-e^x) (sec ^2 y) d y=0