Home
Class 12
MATHS
int e^(x log a ) e^(x) dx is equal to :...

` int e^(x log a ) e^(x) `dx is equal to :

A

` (a^(x))/(log ae)+ c`

B

` (e^(x))/(1+log_e a)+c`

C

` (a^(x) e^(x))/(log_xa)+c`

D

` ((a^(e))^(x))/(log_eae ) + c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If an antiderivative of f(x) is e^(x) and that of g(x) is cos x, then int f (x) cos x dx + int g(x) e^(x) dx is equal to :

int sqrt(e^(x)-1) dx is equal to :

int e^x ((1-x)/(1+x^2))^2 dx is equal to

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

int (1)/( x (log x) log (log x) ) dx is equal to a) log (log x) + C b) log | log (x log x) + C c) log | log | log (log x) || + C d) log | log (log x) | + C

The value of the integeral int _(1) ^(e) (1 + log x )/( 3x) dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

The value of int_1^e 10^(log_e x) dx is equal to

int 1/x(log_(ex)e)dx is equal to

int(e^(6 log _e x)-e^(5 log_e x))/(e^(4 log _e x)-e^(3 log _e x))dx is equal to a) x^3/3+c b) x^2/2+c c) x^2/3+c d) (-x^3)/3+c