Home
Class 12
MATHS
If (sqrt8 +i)^(50) = 3^(49) (a+ib), " ...

If ` (sqrt8 +i)^(50) = 3^(49) (a+ib), " then " a^(2)+b^(2) ` is :

A

` 3`

B

` 8`

C

` 9 `

D

` sqrt8`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

If z = ((sqrt3 + i) ^(3) ( 3i + 4) ^(2))/( ( 8 + 6 i ) ^(2)), then |z| is equal to

If ((1+i)(2+3i)(3-4i))/((2-3i)(1-i)(3+4i)) = a + ib , then a^(2) + b^(2) is equal to

If (sqrt3+i)^(10)=a+ib , then a and b are respectively

If (sqrt(5)+sqrt(3)i)^(33)=2^(49)z , then modulus of the complex number z is equal to a)1 b) sqrt(2) c) 2sqrt(2) d)4

tan [ i log ((a - ib)/(a + ib )) ] is equal to : a) ab b) (2 ab)/( a ^(2) - b ^(2)) c) (a ^(2) - b ^(2))/( 2 ab) d) (2 ab)/( a ^(2) + b ^(2))

A circle of radius sqrt8 is passing through origin and the point (4,0). If the centre lies on the line y =x, then the equation of the circle is a) (x -2) ^(2) + (y-2) ^(2) = 8 b) (x + 2) ^(2) + (y +2) ^(2) =8 c) (x -3) ^(2) + (y -3) ^(2) = 8 d) (x -4) ^(2) + (y-4) ^(2) = 8

If abs(a+ib) = 1 then what is the value of a^2+b^2 ?

If (a+ib) (c+id) (e+if) (g+ih) = A+iB, then show that (a^2+b^2) (c^2+d^2) (e^2+f^2) (g^2+h^2) = A^2+B^2