Home
Class 12
MATHS
The sum of the series 1+(3)/(2!) +(7)/(...

The sum of the series ` 1+(3)/(2!) +(7)/(3!)+ (15)/(4!) + ……" to " infty ` , is : a)` e ( e+1)` b)` e( 1-e)` c)` 3e-1` d)` e(e-1)`

A

` e ( e+1)`

B

` e( 1-e)`

C

` 3e-1`

D

` e(e-1)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite series 2^2/(2!)+2^4/(4!)+2^6/(6!)+..... is equal to a) (e^2+1)/(2e) b) (e^4+1)/(2e^2) c) (e^2-1)^2/(2e^2) d) (e^2+1)^2/(2e^2)

The sum of the series log_(9)3+log_(27)3-log_(81)3+log_(243)3- ....... is a) 1-log_(e)2 b) 1+log_(e)2 c) log_(e)2 d) log_(e)3

The slope of the tangent to the curve y ^(2) e ^(xy) = 9e ^(-3) x ^(2) at (-1 ,3) is

The general solution of the differential equation (dy)/(dx) = e^(y) (e^(x) + e^(-x) + 2x) is a) e^(-y) = e^(x) - e^(-x) + x^(2) + C b) e^(-y) = e^(-x) - e^(x) - x^(2) + C c) e^(-y) = -e^(-x) - e^(x) - x^(2) + C d) e^(y) = e^(-x) + e^(x) + x^(2) + C

lim _( x to 0) [ (2 ^(x) -1)/( sqrt (1 + ) x-1 )] is equal to: a) log _(e) 2 b) log _(e) sqrt2 c) log _(e) 4 d) 1/2

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

Area bounded by the curves y = e ^(x) , y = e ^(-x) and the straight line x =1 is (in sq units) A) e + (1)/(e) B) e + (1)/(e) + 2 C) e + (1)/(e) -2 D) e - (1)/(e) +2

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

The area between the curves y = xe ^(x) and y = xe ^(-x) and the line x=1, is a) 2 (e + (1)/(e)) sq unit b)0 sq unit c) 2/e sq unit d) 2 (e - (1)/(e)) sq unit