Home
Class 12
MATHS
If intsqrt(x)/(x+1)dx=Asqrt(x)+Btan^(-1)...

If `intsqrt(x)/(x+1)dx=Asqrt(x)+Btan^(-1)sqrt(x)+c`, then :
a)A = 1, B = 1 b) A=1,B=2 c) A = 2, B = 2 d)A = 2, B = -2

A

A = 1, B = 1

B

A = 1, B = 2

C

A = 2, B = 2

D

A = 2, B = -2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the derivative of the function f(x) is every where continuous and is given by f(x)={{:(bx^(2)+ax+4,,, x ge 1), (ax^(2)+b, ,, x lt -1):}, then : a)a = 2, b = -3 b)a = 3, b = 2 c)a = -2, b = -3 d)a = -3, b= -2

int(dx)/(5+4cosx)=atan^(-1)(b" tan"(x)/(2))+C , then a) a=(2)/(3),b=-1/3 b) a=2/3,b=1/3 c) a=-2/3,b=1/3 d) a=-2/3,b=-1/3

If intx^(2)*e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+d , then a) a=1,b=1,c=1/2 b) a=1,b=-1,c=-1/2 c) a=1,b=-1,c=-1/2 d)None of these

If A=int_(0)^(1)(dx)/(sqrt(1+x^(4))) and B=pi//4 , then a) A=B b) A=2B c) AltB d) AgtB

If A = (1)/(3) [(1,2,2),(2,1,-2),(a,2,b)] is an orthogonal matrix, then a)a = - 2, b = - 1 b)a = 2, b = 1 c)a = 2, b = - 1 d)a = - 2, b = 1

int (dx)/((x + 1) sqrt(x)) is equal to a) tan^(-1) sqrt(x) + C b) 2 tan^(-1) x + C c) 2 tan^(-1) (sqrt(x)) + C d) tan^(-1) (x^((3)/(2))) + C

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

If int_(a)^(0) (x^(2) - 1)/(1-x)dx = -(1)/(2) , then the value of a is equal to a)-1 b)1 c)2 d)-2

If A= [(2x,0),(x,x)] and A^(-1)= [(1,0),(-1,2)] , then x=a)2 b) (1)/(2) c)1 d)3

If y = tan^(-1) ((2x-1)/(1+ x- x^2) ) , then (dy)/(dx) at x = 1 is equal to a) 1/2 b) 2/3 c) 1 d) 3/2