Home
Class 12
MATHS
int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))...

`int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx` is equal to :
a) `1/4cos[tan^(-1)(x^(4))]+c` b)`1/4sin[tan^(-1)(x^(4))]+c` c)`-1/4cos[tan^(-1)(x^(4))]+c` d)`1/4sec^(-1)[tan^(-1)(x^(4))]+c`

A

`1/4cos[tan^(-1)(x^(4))]+c`

B

`1/4sin[tan^(-1)(x^(4))]+c`

C

`-1/4cos[tan^(-1)(x^(4))]+c`

D

`1/4sec^(-1)[tan^(-1)(x^(4))]+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

int_(0)^(1)1/((x^(2)+16)(x^(2)+25))dx is equal to a) 1/(5)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] b) 1/(9)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] c) 1/(4)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] d) 1/(9)[1/(5)"tan"^(-1)(1/(4))-1/(4)"tan"^(-1)(1/(5))]

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

intsin^(-1)((2x)/(1+x^(2)))dx is equal to a) xtan^(-1)x-ln|sec(tan^(-1)x)|+C b) xtan^(-1)x+ln|sec(tan^(-1)x)|+C c) xtan^(-1)x-ln|cos(tan^(-1)x)|+C d)None of these

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to a) 1/2(ln((x-1)/(x+1)))^(2)+C b) 1/2(ln((x+1)/(x-1)))^(2)+C c) 1/4(ln((x-1)/(x+1)))^(2)+C d) 1/4(ln((x+1)/(x-1)))

tan [ 3 tan^(-1) ((1)/(5)) - (pi)/(4) ] is equal to

int(x^(3)-x)/(1+x^(6))dx is equal to a) 1/6"log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C b) 1/6"tan"^(-1)((x^(2)+1)^(2))/(2)+C c) "log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C d) "tan"^(-1)(x^(2)+1)^(2)/(2)+C

int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx=

int (dx)/((x + 1) sqrt(x)) is equal to a) tan^(-1) sqrt(x) + C b) 2 tan^(-1) x + C c) 2 tan^(-1) (sqrt(x)) + C d) tan^(-1) (x^((3)/(2))) + C

int_(-1)^(1) max {x,x^(3)} dx is equal to a) 3//4 b) 1//4 c) 1//2 d)1