Home
Class 12
MATHS
A vector perpendicular to 2hat(i)+hat(j)...

A vector perpendicular to `2hat(i)+hat(j)+hat(k)` and coplanar with `hat(i)+2hat(j)+hat(k) and hat(i)+hat(j)+2hat(k)` is :

A

a) `5(hat(j)-hat(k))`

B

b) `hat(i)+7hat(j)-hat(k)`

C

c) `5(hat(j)+hat(k))`

D

d) `2hat(i)-7hat(j)-hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors vec(a) = 2hat(i) + hat(j) + 4hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c) = 2hat(i) - 3hat(j) - lambda hat(k) are coplanar, then findvalue of lambda

If the vectors 4hat(i) + 11hat(j) + m hat(k), 7hat(i) + 2hat(j) + 6hat(k) and hat(i) + 5hat(j)+ 4hat(k) are coplanar, them m is equal to .

If the vectors vec(a)= hat(i)- hat(j) + 2hat(k), vec(b)= 2hat(i) +4 hat(j) + hat(k) and vec(c )= lamda hat(i) + 9hat(j)+ mu hat(k) are mutually orthogonal, then lamda+mu is equal to a)5 b)-9 c)-1 d)0

Find a vector of magnitude 6 and perpendicular to both vec(a) = 2hat(i) + 2hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + 2hat(k)

A plane is at a distance of 5 units from the origin and perpendicular to the vector 2hat(i) + hat(j) + 2hat(k) . The equation of the plane is a) vec(r ).(2hat(i) + hat(j) -2hat(k))=15 b) vec(r ).(2hat(i)+ hat(j)-hat(k))=15 c) vec(r ).(2hat(i) + hat(j)+ 2hat(k))=15 d) vec(r ).(hat(i) + hat(j) + 2hat(k))=15

The distance between the line vec(r) = (2hat(i) + 2hat(j) - hat(k)) + lambda(2hat(i) + hat(j) - 2hat(k)) and the plane vec(r).(hat(i) + 2hat(j) + 2hat(k)) = 10 is equal to

Let bar(a)= hat(i) + hat(j) + hat(k), bar(b)= hat(i) + 3hat(j) + 5hat(k) and bar(c )= 7hat(i) + 9hat(j) + 11hat(k) . Then, the area of the parallelogram with diagonals bar(a) + bar(b) and bar(b) + bar(c ) is