Home
Class 12
MATHS
A differentiable function f(x) is define...

A differentiable function f(x) is defined for all `x gt 0` and satisfies `f(x^(3))=4x^(4)` for all `x gt 0`. The valuue of `f'(8)` is :
a)`16/3` b)`32/3`c)`(16sqrt(2))/3`d)`(32sqrt(2))/3`

A

`16/3`

B

`32/3`

C

`(16sqrt(2))/3`

D

`(32sqrt(2))/3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The functions f satisfies the functional equations 3f (x) + 2f ((x+59)/(x-1)) =10 x + 30 for all real x ne 1 . The value of f (7) is : a)8 b)4 c)-8 d)11

If f(x+y)=f(x)f(y) for all x and y, f(6)=3 and f'(0)=10, then f'(6) is :a)30 b)13 c)10 d)0

If a function f satisfies f{f (x)}=x+1 for all real values of x and if f(0)=1/2 then f(1) is equal to a) 1/2 b)1 c) 3/2 d)2

integrate the function x/(sqrt(x+4)), x gt 0

If int(x^(2)-4)/(x^(4)+9x^(2)+16)dx=tan^(-1)f(x)+C , then the value of f(4) is a)3 b)4 c)5 d)6

Let f and g be two functions defined by f(x)=sqrt(x-1) ,and g(x)=sqrt(4-x^2) .Find f-g

Let f and g be two functions defined by f(x)=sqrt(x-1) ,and g(x)=sqrt(4-x^2) .Find f/g