Home
Class 12
MATHS
If alpha and beta are different complex ...

If `alpha` and `beta` are different complex numbers with `absbeta = 1`, then find `abs((beta-alpha)/(1-overlinealphabeta))`

A

0

B

`3/2`

C

`1/2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose alpha and beta are two complex numbers so that absbeta = 1. Raju proved abs((beta-alpha)/(1-overlinealphabeta)) = 1 in the following way. Fill in the blanks and write the complete solution. abs((beta-alpha)/(1-overlinealphabeta)) = abs((beta-alpha)/(betaoverlinebeta-overlinealphabeta)) = abs((beta-alpha)/(beta(....)) = abs(...)/(absbetaabs(...)

If alpha and beta are the roots of the equation x ^(2) + alpha x + beta = 0, then

If alpha and beta are the roots of 4x^(2) + 2x - 1 = 0 , then beta is equal to

If sinalpha=15/17 , cosbeta=12/13 and alpha and beta are in the first quadrant , find the values of sin(alpha+beta) , cos(alpha+beta) , and tan(alpha+beta)

If alphaandbeta are the two different roots of equation a costheta+bsintheta=c prove that (i) tan(alpha+beta)=(2ab)/(a^(2)-b^(2)) (ii) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha, beta are the roots of x^(2)-a(x-1)+b=0 , then find the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b)

If alpha and beta are the roots of the equation x ^(2) + 3x - 4 = 0 , then (1)/(alpha ) + (1)/(beta) is equal to