Home
Class 12
MATHS
Let n=2006!. Then 1/(log(2)n)+1/(log(...

Let `n=2006!.` Then
`1/(log_(2)n)+1/(log_(3)n)+…+1/(log_(2006)n)` is equal to :

A

2006

B

2005

C

2005!

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/x(log_(ex)e)dx is equal to

If f(x)=log_(x^(3))(log_(e)x^(2)) , then f'(x) at x=e is a) (1)/(3e)(1-log_(e)2) b) (1)/(3e)(1+log_(e)2) c) (1)/(3e)(-1+log_(e)2) d) -(1)/(3e)(1+log_(e)2)

If a_(1), a_(2), a_(3),….,a_(n) are in AP and a_(1) = 0 , then the value of ((a_(3))/(a_(2)) + (a_(4))/(a_(3)) +...+(a_(n))/a_(n-1))-a_(2) ((1)/(a_(2)) + (1)/(a_(3))+...+(1)/(a_(n-2))) is equal to a) (n-2) + (1)/((n-2)) b) (1)/((n-2)) c)(n - 2) d)(n - 1)