Home
Class 12
MATHS
inte^(x){logsinx+cotx}dx is equal to : ...

`inte^(x){logsinx+cotx}dx` is equal to :
a)`e^(x)cotx+c` b)`e^(x)logsinx+c`
c)`e^(x)logsinx+tanx+c` d)`e^(x)+sinx+c`

A

`e^(x)cotx+c`

B

`e^(x)logsinx+c`

C

`e^(x)logsinx+tanx+c`

D

`e^(x)+sinx+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to :

inte^(-x)(1-tanx)secxdx is equal to a) e^(-x)secx+c b) e^(-x)tanx+c c) -e^(-x)tanx+c d) -e^(-x)secx+c

inte^(tanx)(sinx-secx)dx , is equal to a) e^(tanx)*cosx+C b) e^(tanx)*sinx+C c) -e^(tanx)*cosx+C d) e^(tanx)*secx+C

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int e^(-x) cosec x(1+ cot x) dx is equal to a) e^(-x) cosec x + C b) -e^(-x) cosec x + C c) - e^(-x) ( cosec x + cot x ) + C d) - e^(-x) ( cosec x - tan x ) + C

int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log_(e)(f(x))+g(x)+C where C is the constant of integration and f(x) is positive. The f(x)+g(x) has the value equal to a) e^(x)+sinx+2x b) e^(x)+sinx c) e^(x)-sinx d) e^(x)+sinx+x

int (sin x + cos x)/( e^(-x) + sin x) dx is equal to a) log | 1-e^(x) sin x| +C b) log | 1 + e^(-x) sin x| + C c) log | 1+e^(x) sin x| + C d) log | 1 -e^(-x) sinx | +C

int (dx)/(e^(x)+e^(-x)+2) is equal to

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to