Home
Class 12
MATHS
The value of the determinant, " "|...

The value of the determinant,
`" "|{:(sqrt(13)+sqrt(3), 2sqrt(5), sqrt(5)), (sqrt(15)+sqrt(26), 5, sqrt(10)), (3+sqrt(65), sqrt(15), 5):}|` is :a)`5(sqrt(6)-5)` b)`5sqrt(3)(sqrt(6)-5)` c)`sqrt(5)(sqrt(6)-sqrt(3))` d)`sqrt(2)(sqrt(7)-sqrt(5))`

A

`5(sqrt(6)-5)`

B

`5sqrt(3)(sqrt(6)-5)`

C

`sqrt(5)(sqrt(6)-sqrt(3))`

D

`sqrt(2)(sqrt(7)-sqrt(5))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt3+sqrt2)^(4)- (sqrt3-sqrt2)^(4) =

Evaluate sqrt(-16)+3sqrt(-25)+sqrt(-36)-sqrt(-625)

Solve sqrt(x+5)+sqrt(x+21)= sqrt(6x+40)

The sum of the first n terms of the series (1)/(sqrt(2)+sqrt(5))+(1)/(sqrt(5)+sqrt(8))+(1)/(sqrt(8)+sqrt(11))+ .... is

The value of (1)/(sqrt(10) - sqrt(9)) - (1)/(sqrt(11)-sqrt(10)) + (1)/(sqrt(12) - sqrt(11))………. - (1)/(sqrt(121) - sqrt(120)) is equal to

a) sqrt7 sqrt7 = b) sqrt7 + sqrt7 =

The area of the triangle whose sides are 6,5 , sqrt(13) (in square units ) is a) 5sqrt(2) b)9 c) 6sqrt(2) d)11

(sqrt3+sqrt2)(sqrt3-sqrt2) എത്ര?

Simplify a) sqrt24 sqrt6 b) sqrt7 sqrt4 sqrt8 c) sqrt21 sqrt15 sqrt35 d) sqrt242 sqrt12 sqrt6

int_(0)^(2)[x^(2)]dx is :a) 2-sqrt(2) b) 2+sqrt(2) c) sqrt(2)-1 d) -sqrt(2)-sqrt(3)+5