Home
Class 12
MATHS
The point of intersection of the line ve...

The point of intersection of the line `vec(r)=7hat(i)+10hat(j)+13hat(k)+s(2hat(i)+3hat(j)+4hat(k)) `
and `vec(r)=3hat(i)+5hat(j)+7hat(k)+t(hat(i)+2hat(j)+3hat(k))` is :

A

`hat(i)+hat(j)-hat(k)`

B

`2hat(i)-hat(j)+4hat(k)`

C

`hat(i)-hat(j)+hat(k)`

D

`hat(i)+hat(j)+hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3hat(i) + 2hat(j) -5hat(k)= x(2hat(i) -hat(j) + hat(k)) + y(hat(i) + 3hat(j)-2hat(k))+z(-2hat(i) + hat(j)-3hat(k)) , then

The distance between the line vec(r) = (2hat(i) + 2hat(j) - hat(k)) + lambda(2hat(i) + hat(j) - 2hat(k)) and the plane vec(r).(hat(i) + 2hat(j) + 2hat(k)) = 10 is equal to

The point of intersection of the straight lines r = (3hat(i) - 4hat(j) + 5hat(k)) + lambda(-hat(i) - 2hat(j) + 2hat(k)) and (3-x)/(-1) = (y+4)/(2) = (z-5)/(7) is

A plane is at a distance of 5 units from the origin and perpendicular to the vector 2hat(i) + hat(j) + 2hat(k) . The equation of the plane is a) vec(r ).(2hat(i) + hat(j) -2hat(k))=15 b) vec(r ).(2hat(i)+ hat(j)-hat(k))=15 c) vec(r ).(2hat(i) + hat(j)+ 2hat(k))=15 d) vec(r ).(hat(i) + hat(j) + 2hat(k))=15

If the vectors 4hat(i) + 11hat(j) + m hat(k), 7hat(i) + 2hat(j) + 6hat(k) and hat(i) + 5hat(j)+ 4hat(k) are coplanar, them m is equal to .

Find a vector of magnitude 6 and perpendicular to both vec(a) = 2hat(i) + 2hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + 2hat(k)