Home
Class 12
MATHS
Define f(x)=int(0)^(x)sintdt, x ge 0. Th...

Define `f(x)=int_(0)^(x)sintdt, x ge 0`. Then :

A

a) f is the increasing only in the interval `[0, pi/2]`

B

b) f is decreasing in the interval `[0, pi]`

C

c) f attains minimum at x = `pi/2`

D

d) f attains maximum at `x=pi`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle3 . Then the range of f(x) is a) [0,2] b) [-1/4,4] c) [-1/4,2] d)None of these

If f(x) = int_0^x tsint dt , then find f^'(x)

If f(x)=cosx-int_(0)^(x)(x-t)f(t)dt , then f''(x)+f(x) is equal to a) -cosx b) -sinx c) int_(0)^(x)(x-t)f(t)dt d)0

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

Let f and g be real functions defined by f(x)=sqrt(x+4), x ge-4 and g(x)=sqrt(x-4), x ge 4 . Find the functions f+g, f-g, f g, f/g

If int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) then f(1) is equal to a)1+e b)2+e c)3+e d)e