Home
Class 12
MATHS
If A+B=pi/4," then "(tanA+1)(tanB+1) equ...

If `A+B=pi/4," then "(tanA+1)(tanB+1)` equals :

A

1

B

`sqrt(3)`

C

2

D

`1/sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B=pi/4 show that (1+tanA)(1+tanB)=2

If A+B+C=pi , then tan((A)/(2))tan((B)/(2))+tan((B)/(2))tan((C)/(2))+tan((C)/(2))tan((A)/(2)) is equal to a) (pi)/(6) b)3 c)2 d)1

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

If A=int_(0)^(1)(dx)/(sqrt(1+x^(4))) and B=pi//4 , then a) A=B b) A=2B c) AltB d) AgtB

If z_1 and z_2 be complex numbers such that z_1 + i(bar(z_2) ) =0 and "arg" (bar(z_1) z_2 ) = (pi)/(3) . Then "arg"(bar(z_1)) is equal to a) (pi)/(3) b) pi c) (pi)/(2) d) (5pi)/(12)

if sin ((pi)/(4) cot theta ) = cos ((pi)/(4) tan theta ), then theta is equal to : a) 2 n pi + (pi)/(4) b) 2n pi pm (pi)/(4) c) 2 n pi - (pi)/(4) d) n pi + (pi)/(4)

If x in((pi)/(2),pi) , then (secx-1)/(secx+1) is equal to a) (cosecx+cotx)^(2) b) (sinx-cosx)^(2) c) (cosecx-cotx)^(2) d) (secx+tanx)^(2)

If z=(pi)/(4) (1+i)^(4) ((1- sqrtpi i)/(sqrtpi + i) + (sqrtpi -i)/(1+ sqrtpi i)) , then ((|z|)/("arg"(z))) equals

Choose the correct answer from the bracket tan^-1((1-tanx)/(1+tanx)) equal to a) pi/4+x/2 b) pi/4-x c) x/4-x/2 d) x-pi/4

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))