Home
Class 12
MATHS
The roots of the equation " "(q-r)x^...

The roots of the equation
`" "(q-r)x^(2)+(r-p)x+(p-q)=0` are :a)`(r-p)(q-r), 1` b)`(p-q)/(q-r), 1` c)`(p-r)/(q-r), 2` d)`(q-r)/(p-q), 2`

A

`(r-p)(q-r), 1`

B

`(p-q)/(q-r), 1`

C

`(p-r)/(q-r), 2`

D

`(q-r)/(p-q), 2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the proposition (p wedge ~q) r is

If alpha, beta, gamma are roots of the equation x^(3)+px^(2)+qx+r= 0 , then prove that (1-alpha^(2))(1- beta^(2)) (1- gamma^(2))=(1+q)^(2)-(p+r)^(2)

If sec alpha and cosec alpha are the roots of the equation x^(2)-px+q=0 , then a) p^(2)=p+2q b) q^(2)=p+2q c) p^(2)=q(q+2) d) q^(2)=p(p+2)

Let p, q, r be three simple statements. Then, ~(p vv q) vv ~ (p vv r) is equal to a) (~p) ^^ (~q vv ~ r) b) (~p) ^^ (q ^^ r) c) p ^^ (q vv r) d) p vv (q ^^ r)

Let p, q, r be three statements. Then, ~(pvv(q^^r)) is equal to a) (~p^^~q)^^(-p^^r) b) (~pvv~q)^^(~pvv~r) c) (~p^^~q)vv(~p^^~r) d) (~pvv~q)vv(~p^^~r)