Home
Class 12
MATHS
If xe^(xy)=y+sin^(2)x, then (dy)/(dx) at...

If `xe^(xy)=y+sin^(2)x`, then `(dy)/(dx)` at x = 0 is :

A

-1

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If xe^(xy) + ye^(-xy) = sin ^(2) x , then (dy)/(dx) at x =0 is a) 2y^(2) -1 b) 2y c) y^(2) -y d) y^(2) -1

If y^(x)=2^(x) , then (dy)/(dx) is equal to

If sin y= x sin (a+y) , then (dy)/(dx) is :

If x^(3)+2xy+(1)/(3)y^(3)=(11)/(3) , then (dy)/(dx) at (2,-1) is

x (dy)/(dx)-y+x sin (y/x)=0

Solution of (dy)/(dx) + 2y tan x = sin x is

If 2y =sin^(-1) (x + 5y) , then (dx)/(dy) is equal to

If xy=e^(x-y) . Find dy/dx .