Home
Class 12
MATHS
If f(x)=tanx-tan^(3)x+tan^(5)x-…" to "in...

If `f(x)=tanx-tan^(3)x+tan^(5)x-…" to "infty` with
`0 lt x ltpi/4`, then `int_(0)^(pi/4)f(x)dx` is equal to :

A

1

B

0

C

`1/4`

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(ac)^(bc)f(x)dx is equal to , (c!=0)

int((x^(4)-x)^(1//4))/(x^(5))dx is equal to

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

If y=5^(tanx) , then (dy)/(dx) at x=(pi)/(4) is equal to

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

int (sec x)^(m) (tan^(3)x + tan x) dx is equal to