Home
Class 12
MATHS
If y=(1+1/x)(1+2/x)(1+3/x)…(1+n/x) and x...

If `y=(1+1/x)(1+2/x)(1+3/x)…(1+n/x) and x ne 0," then "(dy)/(dx)` when x = -1 is :a)n! b) `(n-1)!` c)`(-1)^(n)(n-1)!` d)`(-1)^(n)n!`

A

n!

B

`(n-1)!`

C

`(-1)^(n)(n-1)!`

D

`(-1)^(n)n!`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=lim_(nrarroo)(1+x)(1+x^(2))(1+x^(4))...(1+x^(2n))andx^(2)lt1 , then y' is equal to a)1 b) (1)/(1-x) c) (1)/(1+x) d) (-1)/((1-x)^(2))

(1+ (C_1)/(C_0)) (1+(C_2)/(C_3) )....(1+(C_n)/(C_(n-1))) is equal to : a) (n+1)/(n!) b) ((n+1)^(n))/((n-1)!) c) ((n-1)^(n))/(n!) d) ((n+1)^(n))/(n!)

If (dx)/(x^(2)(x^(n)+1)^((n-1)//n))=-[f(x)]^(1//n)+c , then f(x) is

Consider a real-valued function f(x) satisfying 2f(xy) =(f(x))^(y)+ (f(y))^(x) AA x, y in R and f(1) = a where a ne 1 then (a-1)sum_(i=1)^(n)f(i)= a) a^(n)-1 b) a^(n+1)+1 c) a^(n)+1 d) a^(n+1) -a

If sum_(k=0)^(n) f (x+ka)=0 where a gt 0 then the period of f(x) is a)a b)(n+1) a c) a/(n+1) d)f(x) is non - periodic