Home
Class 12
MATHS
Find a vector of magnitude 6 and perpend...

Find a vector of magnitude 6 and perpendicular to both
`vec(a) = 2hat(i) + 2hat(j) + hat(k)` and `vec(b) = hat(i) - 2hat(j) + 2hat(k)`

A

`2hat(i) - hat(j) - 2hat(k)`

B

`2(2 hat(i) - hat(j) + 2hat(k))`

C

`3(2hat(i) - hat(j) - 2hat(k))`

D

`2(2hat(i) - hat(j) - 2hat(k))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors vec(a) = 2hat(i) + hat(j) + 4hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c) = 2hat(i) - 3hat(j) - lambda hat(k) are coplanar, then findvalue of lambda

A plane is at a distance of 5 units from the origin and perpendicular to the vector 2hat(i) + hat(j) + 2hat(k) . The equation of the plane is a) vec(r ).(2hat(i) + hat(j) -2hat(k))=15 b) vec(r ).(2hat(i)+ hat(j)-hat(k))=15 c) vec(r ).(2hat(i) + hat(j)+ 2hat(k))=15 d) vec(r ).(hat(i) + hat(j) + 2hat(k))=15

If the vectors vec(a)= hat(i)- hat(j) + 2hat(k), vec(b)= 2hat(i) +4 hat(j) + hat(k) and vec(c )= lamda hat(i) + 9hat(j)+ mu hat(k) are mutually orthogonal, then lamda+mu is equal to a)5 b)-9 c)-1 d)0

Find the dot product of vec A= A_x hat i + A_y hat j + A_z hat k and vec B= B_x hat i+ B_y hat j + B_z hat k

The distance between the line vec(r) = (2hat(i) + 2hat(j) - hat(k)) + lambda(2hat(i) + hat(j) - 2hat(k)) and the plane vec(r).(hat(i) + 2hat(j) + 2hat(k)) = 10 is equal to

If a + b and a - b are perpendicular and b = 3hat(i) - 4hat(j) + 2hat(k) , then |a| is equal to