Home
Class 12
MATHS
int(1+x)/(x+e^(-x))dx is equal to...

`int(1+x)/(x+e^(-x))dx` is equal to

A

`log|(x-e^(-x))|+c`

B

`log |(x+e^(-x))|c`

C

`log |(1+x e^(x))|+c`

D

`(1+x e^(x))^(2) + c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int( d x)/(e^x+e^(-x)) is equal to a) tan ^(-1)(e^x)+C b) tan ^(-1)(e^-x)+C c) log (e^x-e^-x)+C d) log (e^x+e^-x)+C

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

int sqrt(e^(x)-1) dx is equal to :

int (dx)/(e^(x)+e^(-x)+2) is equal to

If an antiderivative of f(x) is e^(x) and that of g(x) is cos x, then int f (x) cos x dx + int g(x) e^(x) dx is equal to :

int (1)/(sin x cos x)dx is equal to

int(x^(3)-1)/(x^(3)+x)dx is equal to a) x-log_(e)|x|+log_(e)(x^(2)+1)-tan^(-1)x+C b) x-log_(e)|x|+1/2log_(e)(x^(2)+1)-tan^(-1)x+C c) x+log_(e)|x|+1/2log_(e)(x^(2)+1)+tan^(-1)x+C d)None of these