Home
Class 12
MATHS
The integral int(0)^(1)(2sin^(-1)""(x)/(...

The integral `int_(0)^(1)(2sin^(-1)""(x)/(2))/(x)dx` equals

A

`int_(0)^(pi//6) (x dx)/(tan x)`

B

`int_(0)^(pi//6) (2x)/(tan x) dx`

C

`int_(0)^(pi//2)(2x dx)/(tan x)`

D

`int_(0)^(pi//6)(x dx)/(sin x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int _(0) ^(2pi) sqrt (1 + sin "" (x)/(2))dx is

The value of the integral int_(0) ^(1) (x ^(3))/( 1 + x ^(8)) dx is equal to

The value of the definite integral int_(0)^(pi//2)(sin5x)/(sinx)dx is

Evaluate the following definite integrals int_0^1 sin^-1((2x)/(1+x^2)) dx

The value of int_(0)^(pi)(sin(n+1/2)x)/(sin(x/2))dx is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to

int_(-1)^(1)x(1-x)(1+x)dx is equal to

int_(0)^(1)(dx)/((x^(2)+1)^(3//2))=