Home
Class 12
MATHS
The value of (1)/(sqrt(10) - sqrt(9)) ...

The value of
`(1)/(sqrt(10) - sqrt(9)) - (1)/(sqrt(11)-sqrt(10)) + (1)/(sqrt(12) - sqrt(11))………. - (1)/(sqrt(121) - sqrt(120))`
is equal to

A

`-10`

B

11

C

14

D

`-8`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0)((x)/(sqrt(1+x) + sqrt(1-x))) is equal to

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

If a_(1), a_(2), a_(3), a_(4) are in AP, then (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + (1)/(sqrt(a_(3)) + sqrt(a_(4))) is equal to

The value of sqrt(4+2sqrt(3))-sqrt(4-2sqrt(3)) is

The value of the determinant, " "|{:(sqrt(13)+sqrt(3), 2sqrt(5), sqrt(5)), (sqrt(15)+sqrt(26), 5, sqrt(10)), (3+sqrt(65), sqrt(15), 5):}| is :a) 5(sqrt(6)-5) b) 5sqrt(3)(sqrt(6)-5) c) sqrt(5)(sqrt(6)-sqrt(3)) d) sqrt(2)(sqrt(7)-sqrt(5))

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to