Home
Class 12
MATHS
If A is a non-singular matrix of order 3...

If A is a non-singular matrix of order 3, then adj (adj A) is equal to

A

A

B

`A^(-1)`

C

`(1)/(|A|)A`

D

`|A|A`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an invertible matrix of order 2, then det( A^(-1) )=

Let A be a non-singular square matrix of order 3xx3 .Then |adj A| is ...

Let B is a square matrix of order 5, then abs[kB] is equal to….

Let A be a square matrix of order 2x2 then abs[KA] is equal to

Let A be a square matrix of order 'n' then abs[KA]=

If A = [(1,0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2) + 2A^(4) + 4A^(6) is equal to a)7 A^(8) b)7 A^(7) c)8I d)6I

If A is a square matrix of order 3, then value of |(A - A^(T))^(2005) | is equal to A)1 B)3 C)-1 D)0

If A is a square matrix such that A^2=A , then (I+A)^2-3A is equal to a)A b)I-A c)I d)3A

If A is a square matrix such that A^2=A , then (I+A)^3-7 A is equal to A) A B) I-A C) I D) 3A