Home
Class 12
MATHS
If tan^(-1)(x+2)+tan^(-1)(x-2) - tan^(-1...

If `tan^(-1)(x+2)+tan^(-1)(x-2) - tan^(-1)((1)/(2)) = 0`,
then one of the values of x is equal to

A

`-1`

B

5

C

`(1)/(2)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

If tan^(-1) ((x-1)/(x-2)) + tan^(-1) ((x+1)/(x+2)) = pi/4 . then find the value of x.

If tan^(-1) (-x) + cos^(-1) ((-1)/(2)) = (pi)/(2) , then the value of x is

If tan^-1(frac(x-1)(x-2))+tan^-1(frac(x+1)(x+2))=pi/4 , then find the value of x

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

If tan(cos^(-1)x)=sin(cot^(-1)""(1)/2) , then find the value of x.

Let tan^(-1)y = tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x| le 1/sqrt3 . Then the value of y is

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

If tan ^(-1) x + 2 cot ^(-1) x = (pi)/(3), then the value of x is

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to