Home
Class 12
MATHS
int(4e^(x))/(2e^(x)-5e^(-x))dx is equal ...

`int(4e^(x))/(2e^(x)-5e^(-x))dx` is equal to

A

`4"log"|e^(x)-5|+C`

B

`1/(4)"log"|e^(2x)-5|+C`

C

`"log"|2e^(2x)-5|+C`

D

`4"log"|2e^(x)-5|+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to

int (dx)/(e^(x)+e^(-x)+2) is equal to

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

int x^(4)e^(x^(5)) cos (e^(x^(5)))dx is equal to

int(e^(-x))/(1+e^(x))dx=

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int(1)/((e^(x)+e^(-x))^(2))dx=