Home
Class 12
MATHS
int1/(x"log"x^(2))dx is equal to a)1/(2)...

`int1/(x"log"x^(2))dx` is equal to a)`1/(2)"log"|"log"x^(2)|+C` b)`"log"|"log"x^(2)|+C` c)`2"log"|"log"x^(2)|+C`d)`4"log"|"log"x^(2)|+C`

A

`1/(2)"log"|"log"^(2)|+C`

B

`"log"|"log"x^(2)|+C`

C

`2"log"|"log"x^(2)|+C`

D

`4"log"|"log"x^(2)|+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int((x+1)^(2))/(x(x^(2)+1))dx is equal to a) "log"|x(x^(2)+1)|+C b) "log"|x|+C c) "log"|x|+2"tan"^(-1)x+C d) "log"(1/(1+x^(2)))+C

int (1)/( x (log x) log (log x) ) dx is equal to a) log (log x) + C b) log | log (x log x) + C c) log | log | log (log x) || + C d) log | log (log x) | + C

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

int(sqrt(x)+1/(sqrt(x)))^(2)dx is equal to a) x^(2)/(2)+2x+"log"|x|+C b) x^(2)/(2)+2+"log"|x|+C c) x^(2)/(2)+x+"log"|x|+C d) x^(2)/(2)+2x+2"log"|x|+C

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int (sin x + cos x)/( e^(-x) + sin x) dx is equal to a) log | 1-e^(x) sin x| +C b) log | 1 + e^(-x) sin x| + C c) log | 1+e^(x) sin x| + C d) log | 1 -e^(-x) sinx | +C

int(dx)/(x-sqrt(x)) is equal to a) 2log|sqrt(x)-1|+C b) 2log|sqrt(x)+1|+C c) log|sqrt(x)-1|+C d) (1)/(2)log|sqrt(x)+1|+C

int(x^(3)-x)/(1+x^(6))dx is equal to a) 1/6"log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C b) 1/6"tan"^(-1)((x^(2)+1)^(2))/(2)+C c) "log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C d) "tan"^(-1)(x^(2)+1)^(2)/(2)+C

inte^(3logx)(x^(4)+1)^(-1)dx is equal to A) e^(3logx)+c B) (1)/(4)log(x^(4)+1)+c C) (1)/(2)log(x^(4)+1)+c D) (x^(4))/(x^(4)+1)+c