Home
Class 12
MATHS
int(-1)^(1)x(1-x)(1+x)dx is equal to...

`int_(-1)^(1)x(1-x)(1+x)dx` is equal to

A

`1/(3)`

B

`2/(3)`

C

0

D

-1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1) x(1 - x)^(5)dx is equal to a) (1)/(6) b) (1)/(7) c) (6)/(7) d) (1)/(42)

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

int_(-1)^(1) max {x,x^(3)} dx is equal to a) 3//4 b) 1//4 c) 1//2 d)1

int(x^(3))/(x+1)dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

If int_(1)^(2)e^(x^(2))dx=a , then int_(e)^(e^(4))sqrt(lnx)dx is equal to

int_(-1)^(0) (dx)/(x^(2)+2x+2) is equal to